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Confidence Intervals for Parameters of
Nonparametric Regression Spline Truncated
Model for Longitudinal Data Using Pivotal Quantity
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Abstract—The relationship pattern between the response variable with predictor variable can be obtained by using regression curve. The
approach in regression curve that often used is a parametric regression approach, which assumed the form of regression curve is known.
However, not all pattern of regression curve is known that there are no information about the kind of relationship between the response
variable and predictor variable. If the regression curve is unknown then we can predict the model using nonparametric regression model
approach. Nonparametric function estimation is a major research area at the present time. One of the nonparametric regression
approaches is the spline truncated, which has the advantage of knot points. With the point of knots, the resulting model will follow the form
of changes in data behavior patterns. Data obtained from the repeated observation of each object at different time intervals is called
longitudinal data. Studies of spline-truncated nonparametric regression using longitudinal data have been limited to obtaining point
estimation. While the point estimation has a weakness that is the probability of error in guessing the true value of a parameter 6 is greater.
It therefore needs a range of probability values for 6 with a certain degree of confidence called the interval estimation or confidence
interval. Confidence interval is one of the most important parts of statistical inference. The confidence interval confirms that the true value
of parameter value will be in the range interval. In constructing the shortest interval for the parameters of spline truncated nonparametric
regression model of longitudinal data using pivotal quantity. From the result obtained confidence intervals for parameters of nonparametric
spline truncated regression for longitudinal data using pivotal quantity which is distributed student-t.

Index Terms— confidence interval, parameters, nonparametric regression, spline truncated, optimum knot points, longitudinal data, pivotal
quantity.
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1 INTRODUCTION

he relationship pattern between the response variable

with predictor variable can be obtained by using

regression curve. The approach in regression curve that
often used is a parametric regression approach, which
assumed the form of regression curve is known. However,
not all pattern of regression curve is known that there are no
information about the kind of relationship between the
response variable and predictor variable. If the regression
curve is unknown then we can predict the model using
nonparametric regression model approach. Nonparametric
function estimation is a major research area at the present time
and we just mention representative example of modern
techniques for multivariate function estimation in several
dimension such as ACE [1], MARS [2], Additive Models [3]
and Regression Spline [4], [5], and [6]. The curve simply
assumed to be smooth in the sense contained in a particular
function space. If the form of regression curve is not known
pattern, then nonparametric regression analysis is more
recommended for use [7]. One of the nonparametric function
estimation is regression spline. Spline has a high flexibility
and ability to estimate data behavior that tends to differ at
different intervals and spline is a model providing superior
and very respectable visually statistical interpretation [8].
Some research using spline functions are [9], [10], [11] and
[12]. One of the family of spline function is spline truncated
[13] and [14]. Spline truncated has knot points. Knot points
will connect pieces polynomial such that the spline truncated
has good flexibility for nonlinearity relationship between
predictor and response variables [13].

Changes in data behavior patterns if observed year by year
can provide more complete information about the dynamics of
changes in the behavioral patterns of the data. Data obtained
from the repeated observation of each object at different time
intervals is called longitudinal data. Longitudinal data
modelling with nonparametric regression has been developed
by [15], [16] and [17]. Research of longitudinal data modelling
with nonparametric regression spline truncated has been
proposed by [18], but limited to obtaining point estimation.
While the point estimation has a weakness that is the
probability of error in guessing the true value of a parameter
(0) is greater. It therefore needs a range of probability values
for (0) with a certain degree of confidence called the interval
estimation or confidence interval [19].

Confidence interval is one of the most important parts of
statistical inference. The confidence interval confirms that the
true value of parameter value will be in the range interval.
Confidence interval with smoothing spline has been studied
by [20], but not using longitudinal data nor spline truncated.
In constructing the shortest interval for the parameters of
model of

spline truncated

longitudinal data using pivotal quantity. The pivotal quantity

nonparametric regression
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method is mainly due to George Bernard and David Fraser of
The University of Waterloo, and this method is perhaps one of
the most elegant methods of constructing confidence intervals
for unknown parameters [19]. Confidence intervals for
parameters of nonparametric regression can be used to
determine predictor variables that significantly influence
response variables. If the confidence interval contains a zero
value, then the predictor variable has no significant effect on
the response variable. In this research developed the shortest
confidence

intervals of spline truncated nonparametric

regression model parameters for longitudinal data.

2 LITERATURE REVIEW

2.1 Nonparametric Regression

The regression curve between predictor and response
variables is not always known. If forced to use parametric
regression then the resulting model is not in accordance with
the form of relationship pattern which will ultimately produce
a large error. Nonparametric regression is one of the
approaches used to determine the relationship pattern between
predictor variables and the unknown response of the
regression curve or no complete past information about the
shape of the data pattern [2].

Some approaches in nonparametric regression include:
spline, kernel, fourier series, wavelet, etc. Spline is an approach
often used in nonparametric regression. Spline regression has a
functional basis which in its parameter optimization process
uses optimization. Spline regression has the advantage of
adjusting data patterns that change sharply with knots.

In general, nonparametric regression model:
yi=fz)+ei=12,..,n, (1)
With y; is the i-th response variable, while the function f(z;) is
the regression curve, with z; as the predictor variable and ¢; is
the random error assumed to be independent normal

distribution with mean zero and variance o’ [4].

2.2 Spline Truncated Nonparametric Regression for
Longitudinal Data

Spline truncated nonparametric regression model on
longitudinal data can be written in the form:
Yiw = f@Ziw) + &, i = 1,2, ., msw = 1,2,..,t ()
With
f @) = Zfto Bjizh, + Zhes ViaCow = Ki) T, ()

where N is the number of observed objects and t is the
amount of time of the object being observed, while

m

J
z BjiZiw
=0
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is polynomial components and
T
Z Vi (Ziw — Kie)F
k=1

is truncated with:

(s = Kt = { (v ™ H) 7 = K @
0 2 Ziw < K

Equation (1) is a nonparametric regression spline-truncated
form in longitudinal data with one nonparametric predictor
variable. If the nonparametric spline truncated regression in
the longitudinal data consists of one response variable with a
nonparametric predictor variable of g, then the spline
truncated regression curve for longitudinal data with m =1
can be expressed in terms of the following equation

f @) = Boi + Z?:1(ﬁliziwl + k=1 Yt Ziwt — Kku)}f)- @)

So, equation (2) becomes

Yiw = Boi + Z?:1(ﬁliziwl + Yhk=1 Vi Ziwt — Kkli)-ll-) +&w, (6)
with i=1,2,....,n;w=12,...,t.

In longitudinal data, parameter estimates were obtained
using Weighted Least Square (WLS) to overcome correlations
in the same observational subjects. Then write equation (6) in
matrix notation as follows

§y=z[K]B+& @)

with K = K, K;, ..., K.
The B estimator is obtained by completing the WLS
optimization as follows:

minBeRm(1+q(r+1)){(}7 - Z[K]E)TW_IUI - Z[K]E)}' (8)

With matrix W is given by

wy 0 ... 0
W= (:) u:/Z (:) ©)
3 METHODS

3.1 Generalized Cross Validation (GCV)

One of the most commonly used methods of choosing an
optimum knot point is the Generalized Cross Validation
(GCV). Compared with other methods, such as Cross
Validation (CV) and Unbiased Risk (UBR) or Generalized
Maximum Likelihood (GML) methods, GCV has theoretically
optimal asymptotic properties [3]. GCV method also has
advantages that do not require knowledge of the population
variance o02and GCV invariance method of transformation [3].

GCV function is given by
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T YL (- 9)?
n-ltrace(I — A[K]D]?’
with GCV being a vector containing GCV values from knot
points.
optimization

Gev(k) = [ (10)

Optimum knot points is obtained through

; A . n ' YL (v — 9)? (11)
klkrr;l,RkT{GCV(k)} - kl,kn;l.?,kr {[n‘ltrace(l — A[KD]?)’

with k = (Ky,K,, ..., K;). A[K] get from equation

¥ = AlK]y (12)

3.2 Pivotal Quantity

There are several methods for constructing confidence
intervals for an uknown parameter (0). In this research, using
pivotal quantity method to constructing confidence intervals
for unknown parameters. Pivotal quantity is a function of
random sample of size n from a population and parameter (0)
whose probability distribution is the
parameter (O).

independent of

4 RESULTS

Based on equation (7) and (8) we get estimator of
parameter B using Weighted Least Square (WLS).
Lemma 1.
If model of nonparametric spine truncated regression for
longitudinal data on equation (7) with
g~N(0,0'W),
then the estimator parameter is
2 _ -1 _
B=(z[k]' w'z[k]) z[k] wy.

Proof
Based on equation (8) we obtain

. S\T -1~ =
(y-z[x]8) W™ (y-z[x]8)
—y'W'y-8"z[K]' W'y-y'W'z[K]B+B'Z[K]' W'Z[K]E (13)
To find the value of B that minimize the sum squares of the
devations with Weigthed Least Square, we differentiate with

respect to B and set the the results equal to 0:
6( yWy-8"Z[K] W'y-y'W'z[K]8+8"Z[K]' W'Z[K] ~)
AT
-—z[k]' w'y+z[k] w'z[k]8
Then set the results from (14) equal to 0
e-z[K]'wW'y+z[K] w'z[K]E =0

(14)

o z[k]  w'z[k]8=z[k] Wy

B -1
B=(z[k]' w'z[k]) z[k]' wy (15)
Then from equation (7) we get

j=2z[K]B
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y = Z[K](Z[K]T W’IZ[K]) | z[k] wy (16)
Equation (16) is equivalent with
y=A[K]y (17)
with
T -l T
Al[K]= Z[K](Z[K] w Z[K]) z[k] w (18)

Next, if we assume

£~N(0,0°W) then y~ N (2[K]B,o’W ).
The following is given a Lemma about the distribution of B.
Lemma 2.
If B is given by the equation (15) then

s 5 _ -1

B~N (B,a2 (z[x]" w'z[x]) )
Proof Since § is normally distributed, equation (12) which is a
linear combination of § is also normally distributed with the

expected value and its variance.
A -1
E(B)= E((Z[K]T w'z[k]) z[k]' W’ly)

- (2[K]" W '2[K]) " 2[x]" e (9)

(z[x]' W_IZ[K])_l z[k] w'z[K]E

-B (19)
Var(B) = Var((Z[K]T W’IZ[K])_1 z[k]' w"ly)
= (z[x]" W_IZ[K])_I z[k]' W“VarT( )
((Z[K]T W_IZ[K])_I z[k]' w'l)
=0 (z[x]' W_IZ[K])A (20)

Based on the results of equations (19) and (2), it is proven that
S . _ -1
B~ N (B,o-2 (z[x]" w'z[k]) )
Next we construct confidence intervals (1 - a) 100% for

estimator parameter I§V, v =1,2,..,rqn using pivotal quantity

method with unkown variance g2.
We will using Mean Square Error (MSE) to expected the

variance of the estimator B, . Now using pivotal quantity as

follows
B, - B
TV(ZI,ZZ,...,Zq,y) :V7AV
Var( ~v)
= év_éy
\/0'2 (Z[K]T W_IZ[K]);VI
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_ B, - 6,
\/MSE (z[x]' W_IZ[K]);VI ey
T,(2.2,.....2,.y) is a pivotal quantity for parameters By, .
With
(Z[K]T W_IZ[K]);Vl

is the vv-th diagonal element of the matrix

-1
(z[x]" w'z[k])
and MSE for unkown variance g2 is given by
G-9'G-9)
nt — n(l +q(r+ 1))

MSE =

(y-2[k]8)' (v-2[k]8)

= (22)
nt—n(l+q(r+1))
Then from equation (22) we get
-1
y' (I—Z[K](Z[K]T W’IZ[K]) z[K]' W’l)y
MSE = (23)

nt-n(1+q(r+1))

The following is given a Lenth about the distribution of
T, (Zl,zz,...,zq, y).
Lemma 3.

IfT, (Z] 2 Zysens 2y, y) is given by the equation (21) then

T (Zl’ ZysenZgs y) ~ Yat-n(i+g(r+1y)
Proof
To facilitate the proof, we do alittle translation

B, -B
TV(ZI,ZZ,...,Zq,y)Z s -
\/MSE (z[x]" w'z[K])
: i
ek g wy
nt-n(l+q(r+1)) LZ{K] w Z{K]jw
(24)
B, - B,
\/(Z[K]T W_IZ[K]);VI
_ (25)

' (I —Z[K](Z[K]T W_IZ[K])_I z[k]' w_l)y

nt-n(1+q(r+1))

Equation (25) equivalent with
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T(Z z G

19890 7Zq’y):
\/ o, (26)

nt - n(1+ q(r +1))

where

(27)

and
-1
_ (I -z [K](Z[K]T wflz[K]) Z[K]T w )37 (28)
Next performed the following proofing steps:
i. The first step proves o, ~ N(0,1).

The following is given a Lemma the distribution of .

Lemma 4.

If o = LA , then @, ~ N(0,1).
Proof

Since B is normally distributed, and statistic o, is a linear

combination of B then o, ~N(E(o),Var(w )) where

B, - B

v \

E(wl) =E =
\/(Z[K]T w'z[K])

w

- 1 E(8,-8,)

\/(Z[K]T W’IZ[K]);V1 '
-0, (29)
and
Var (@, ) = Var é" 8 =
\/(Z[K]T W’IZ[K])VV
= ! Var (é B, )

(z[x]' W’IZ[K])vv

- ! z[x]' W_IZ[K])_I +0

(z[x]" w"Z[K]);V1 s
=1. (30)
Based on the results of equations (29) and (30) it is proven
that @, ~ N(0,1).

ii. The second step proves @, ~ Zz(nt Cn(1+q(re1))’

The following is given a Lemma about the distribution of

.

IUSER © 2017

Lemma 5.
-1

fo,=§" (1 ~z[k](z[x]" w'z[k]) z[x]' w’l)y,

then o, ~ y

2(nt—n(1+q(r+1))

Proof
w,=§ (1 z[k](z[x]' W_1Z[K])71Z[K]T w“)y
-y Ay

To prove w, ~ it is necessary to

2
t-n(1+q(r+1))
show that the matrix

-1
a=1-z[k](z[x]' w'z[k]) z[x] w
is symmetrical and idempotent.

.The matrix A is said to be symmetrical if A" =A. The
following is a proof that A is symmetrical

a=1-z[k](z[x]' W_IZ[K])A z[k] w

Let

p=z[K](z[K] w’lz[K])fl z[k]' w

Which is a symmetric and idempotent matrix, then

D =D , so that

A" =(1-p) =(1-D)=A (31)
From the above description shows that the matrix A is

symmetrical with the size nt x nt. Further proved also that
the matrix A is idempotent. Matrix A is said to be

idempotent if A’=A. Here is a proof that Ais
idempotent.

A% - (I _ Z[K](Z[K]T W_IZ[K])_1 z[x]' W_l)
(12012 IxT" w2 21T W)

-1
=1 —Z[K](Z[K]T W“Z[K]) z[k] w
A (32)
Based on the results of equations (31) and (32) it is proven

that the matrix A is symmetric idempotent, then
2

Qi (rank(A), 7"Ay /26°)

Then next step is to get the rank of matrix A and the value
of J'Ay.

First step, since the matrix A is symmetric and idempotent
then rank (A) = trace (A).

trace A = trace(l ~z[x](z[x] W'z [K])_l z[k] w™ )
= trace (1, ) - trace (Z[K](Z[K]T W_IZ[K])_] 7]K]' w")

= trace (I, ) - trace (Z[K]T wz[K](z[]" W‘IZ[K])_1 )

http://www.ijser.org
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= trace (1, ) - trace I, 4rny )
=nt-n(1+q(r+1)) (33)
Second step is calculate the value of §'Ay as follows
7'y = (2[K]8)" A(z[K]8)

_(7K]8)" (I—Z[K](Z[K]T wzK])) (K]’ W_l)(Z[K] B)

-8'7[K]' 7[K|B-8"Z[K]' [K]B
-0 (34)

From the results of equations (33) and (34) it can be
concluded that:

wZNZZ(nt—n(Hq(rH)) (35)
iii. The last step proves o, and w, are independent.
_ év — év
\/(Z[K]T W_IZ[K]);V
) (z[x]' W_IZ[K])_I z[k] wy-8,
\/(Z[K]T w 1Z[K]);Vl
_ Cy-B,
\/(Z[K]T W_IZ[K]);VI
and
w,=§" (I ~z[k](z[x]' W_IZ[K])_I z[k]' W“)y
- §' Ay
then @, and w, are independent if and only if CA=0.
CA = [(Z[K]T W’lz[K])_1 z[k]' w’l} x
[1 ~z[k](z[x]' W_IZ[K])_I z[x]' W‘l]
= (z[x]' W71Z[K])71 z[k] W'+
~(2[x]' W71Z[K])71 z[k] w
=0 (36)

From the equation of (36) it is proven that CA = 0 then @,

and o, are independent.

Based on the description of points (i), (ii), and (iii) it can be
deduced that statistics from (21)

TV(Z z

72y Y ) = 1
) \/MSE(Z[K]T w'z[K])

1266
a)Z
nt-n(1+q(r+1))
N (0,1)
= 2 - t(nt—n(q(r+1)))
4 (nt-n(1+q(r+1))
nt-n(1+q(r+1))
So it is proven that

T, (Zl yZg5ens Zq» y) ~ Ynt-n(1+q(r+1y) (37)

is the pivotal quantity for the regression parameter B,
when variance (62 ) is unknown. Further confidence intervals

(1 - a) can be obtained by solving the equation in probability

P(L, <T,(2.23.0n2q.y) <U, ) =1-a (38)
With L, and U, being elements of real numbers, where
L, <U,.

If equation (24)

TV(ZI,ZZ,...,Zq,y)

g ik KT WK K] W
nt-n(1+q(r+1))

(4] WZ[K])|

Let A=1-Z[K](z[x]' W_IZ[K])_I z[k]' W
Then
B, -8

)

(39)

TV(ZI,ZZ,...,Zq,y):\/ T

y Ay T yww—
nt-n(1+q(r+1))(Z[K] w IZ[KD

-1
w
Then from substituted equation (39) to equation (38), it
becomes

B, - B

PIL, < = s <U, |=l-a,
T A ) 4
A(Z[K]T w 1Z[K])
nt-n(l+q(r+1) w
(39)
Equation (39) is equivalent to
: 7' Ay T k1)
B, <B, -L Z[K] w zZ[K (40)
o nt-n(1+q(r+1))( L] [ ])"V
and
(41)

~T , ~
B, > B, —UV\/ vy AY (z[x]" w'z[k]) 1
nt-n+q(r +1)) w
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Based on equation (40) and (41) there is a confidence
interval for parameters of nonparameteric regression spline
truncated for longitudinal data when variance unknown is

~T , ~
2 y Ay T  _ -1
Pl -L |——" (z[K] w'z[K]) <B <
(V LV\/nt-n(l+q(r+l))( [x<] [ ])W Y

B, —UV\/ﬁ(Z[K]T W’IZ[K]);V1
nt - n(l+q(r +1))
(42)
Next find the values of L, € R and Uy € R, so the length
of the interval in equation (42) is the shortest. Let E(LV,UV)

be the length of the confidence interval above then:

(L.U,) = év—Lv\/

nt-n(l+q(r +1)

v A7 (Z[K]T W’IZ[K]);V1 +

-| &, —UV\/ﬁ(Z[K]T W_IZ[K]) 1

nt-n(1+q(r+1)) w

=(w4ﬁ$—lﬂl—umfwumn‘

nt-n(l+q(r +1)) w

(43)
As a result the shortest (l-a)confidence interval is

obtained from completing conditional optimization:

7' Ay T 1
\/—(Z[K] W Z[K])
nt-n(1+q(r +1) w

min {#(L,U,)} = min

LU, eR LU erR

(44)
with conditions
Uy
[ v (wydw=1-a (45)
L,
or
p(U,)-o(L)-(1-a)=0 (46)

The function y is the probability distribution

t(nt—n(1+q(r+1)))

and

@ is the cumulative probability distribution ‘[(m_n (+q(r+1) -

The optimization of equations (44) and (45) or (46) using
the Langrange Multiple method. Lagrange function is then
formed as follows.

1267

~T

QRWJﬁerV Y (2] wz[x))

-1
nt-n(l+q(r +1)) w

+2[e(u,)-o(L,)-(1-a)]
(47)
where A is the Lagrange constant. The next step is to do a
partial derivative of functions G(LV,UV,}L) against L,,,Uy,
and A . So obtained:

aG(LV’UV’/?‘) __ yTAy (Z[K]T W—IZ[K])71 +
aL, nt-n(1+q(r+1)) w
-2(¢'(L,)) =0
(48)
a6 (L,,U,,4) Ay . =
= Z|K| W Z|K
au, \/nt-n(1+q(r+1))( [x] [ ])"" ’
l((p'(Uv)) =0
(49)
G (L,,U,,2
BLet) [ -0()-(-a)]-0 @
Based on equation (48) and (49) obtained
v (L) = (U,) 61

then the solution of equation (51) is

Ly =Uy or L, =-U,.
But the suit solution of equation (51) is L, = -Uy,. So to obtain
the shortest confidence interval must take the values L, and

U, that suit the equation :

Ly 0
J- z//(w)dw=uf y/(w)dw=% (52)

“w v
If the level of significance (l—a) is determined, then the
values of L, and Uy, that conform can be seen in the student-t

distribution table with t Thus the shortest

(nt-n(l+q(r+1)))
confidence intervals for parameter of the nonparametric
regression spline truncated model for longitudinal data is
given by:

T -
P(év —UV\/y—Ay(z[K]T w'z[k]) Lo B, <
nt-n(l+q(r +1)) w

~ ~T \7 —
B, +U, \/y—Ay(Z[K]T w'z[K]) 1 j “1-a
nt-n(1+q(r+1)) w
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? a
where Uy, is derived from J v (W) dw=—.
2

Yy

Since the student-t distribution already exists, the shortest

confidence intervals for parameter B, can be written as:

T,
N 7 Ay T s
Pl B —t ————(z[K] W 'z[K]) <8 <
B [%,nt—n(l+q(r+l))j nt-n(1+q(r+1))( [ ] [ ])W !
e, IS welk]), |1
(E,ntfn(qml))j nt-n(1+q(r +1)) w
(54)

with A=1I- Z[K](Z[K]T W_IZ[K])_I z[k] w

5 CONCLUSION

In this research was constructed the confidence intervals
using the concept of pivotal quantity and the shortest
confidence interval. The shortest confidence interval for
parameters of nonparametric spline truncated regression for

longitudinal data using pivotal quantity when variance (0-2)
is unknown, the pivotal quantity is

B, - B

\ )

(z[x]" w'z[x])

TV(ZI,ZZ,...,zq,y)z —

y Ay B
nt - n(1+q(r +1)) b
-1
with A =1-2[K](z[x]" w'z[k]) z[k]' W and
Where
Tv (Zl 2ZyseesZys y) ~ tnt—n(l+q(r+l)

and the shortest confidence intervals for parameter B, as

follows
T~
2 y Ay T -1 -
Pl B —t ————(z[x] wz[K]) <B, <
% [g,nt—n(nq(m»j nt-n(1+q(r+1))( [x] [ ])W %
~T -
2 y Ay T -1 -1
B, +t — | Z[K]| W Z[K =l-a
{%m*“(Q(”l))) nt-n(1+q(r+1))( [ ] [ ])W
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